

Manufacture's Declaration

Confirmation of Compliance with the Requirements of EN 50549-1:2019

we hereby confirm that all Solplanet inverters listed below table meet the requirement of EN 50549-1:2019 with the deviation of the Netherlands.

Brand	Solplanet			
Type reference	ASW3000-S	ASW3680-S	ASW4000-S	ASW5000-S
Max. input DC voltage	580V	580V	580V	580V
MPP DC voltage range	80 – 550V	80 – 550V	80 – 550V	80 – 550V
Max. input DC current	12A	12A	12A	12A
Rated output AC voltage	230V	230V	230V	230V
Max. output AC current	15A	16A	20A	22.7A
Max. apparent output power	3000VA	3680VA	4000VA	5000VA

The inverters meet the requirement of EN 50549-1:2019 with the deviation of the Netherlands, along with the specifications in the data sheet and the CE declaration, by the following points:

- The default values for the requirements on voltage and frequency protection are from the standard EN 50438: 2013 with the deviation of the Netherlands.
- The certificate of compliance with EN 50549-1:2019 has been issued by an accredited institute. The certificate can be downloaded from the website <u>www.aiswei-tech.com</u>.
- The factory setting for the active factor is one.
- The factory setting for power response to over-frequency is activated.
- The grid protection parameters and field adjustable parameters can't be changed by user, an installer or by any person other than AISWEI.

Suzhou, 2020-02-20 AISWEI New Energy Technology (Jiangsu) Co., Ltd.

Shengwen Wu, Vice President

Appendix

	Parameter	Typical value range	Value default		
4.9.2 Requirements on	Undervoltage threshold stage 1	0.2 Un – 1 Un	0.8 Un		
voltage and frequency	Undervoltage operate time stage 1	0.1 s – 100 s	2 s		
protection	Undervoltage threshold stage 2	0.2 Un – 1 Un	N/A		
	Undervoltage operate time stage 2	0.1 s – 5 s	N/A		
	Overvoltage threshold stage 1	1.0 Un – 1.2 Un	1.1 Un		
	Overvoltage operate time stage 1	0.1 s – 100 s	2 s		
	Overvoltage threshold stage 2	1.0 Un – 1.3 Un	N/A		
	Overvoltage operate time stage 2	0.1 s – 5 s	N/A		
	Overvoltage threshold 10 min mean protection	1.0 Un – 1.15 Un	N/A		
	Underfrequency threshold stage 1	47.0 Hz– 50.0 Hz	48 Hz		
	Underfrequency operate time stage 1	0.1 s – 100 s	2 s		
	Underfrequency threshold stage 2	47.0 Hz – 50.0 Hz	N/A		
	Underfrequency operate time stage 2	0.1 s – 5 s	N/A		
	Overfrequency threshold stage 1	50.0 Hz – 52.0 Hz	51 Hz		
	Overfrequency operate time stage 1	0.1 s – 100 s	2 s		
	Overfrequency threshold stage 2	50.0 Hz – 52.0 Hz	N/A		
	Overfrequency operate time stage 2	0.1 s – 5 s	N/A		
1.10.2 Automatic	Lower frequency	47.0 Hz – 50.0 Hz	49.5 Hz		
econnection after	Upper frequency	50.0 Hz – 52.0 Hz	50.2 Hz		
tripping	Lower voltage	50 % Un – 100 % Un	85 % Un		
	Upper voltage	100 % Un – 120 % Un	110 % Un		
	Observation time	10 s – 600 s	60 s		
	Active power increase gradient	6 % – 3000 %/min	10 % /min		
1.10.3 Starting to	Lower frequency	47.0 Hz – 50.0 Hz	49.5 Hz		
generate electrical power	Upper frequency	50.0 Hz – 52.0 Hz	50.1 Hz		
	Lower voltage	50 % Un – 100 % Un	85 % Un		
	Upper voltage	100 % Un – 120 % Un	110 % Un		
	Observation time	10 s – 600 s	60 s		
	Active power increase gradient	6 % – 3000 %/min	disable		
Permanent DC-injection	0.5% of rated inverter output current				
oss of Mains (LoM)	2s according to EN 62116				